4 research outputs found

    Fabrication and characterization of environmentally friendly biochar anode

    No full text
    Electrical power generation by means of electrochemical systems utilizing wastewaters is a global energy challenge tackling technique for which a creation of novel eco-friendly electrode materials is in high relevance. For this purpose a Rhodophyta algae derived activated biochar anode bound with a flaxseeds mucilage binder (5, 10, 20, 30 wt.%) was formed and characterized by thermogravimetric, Brunauer-Emmett-Teller (BET) analysis as well as conductivity and mechanical resistance determination. Activation technique with KOH prior to carbonization at 800 °C of algae was employed to obtain biocarbon with a large surface area. The highest specific surface area of 1298.49 m2/g was obtained with the binder-free sample and had a tendency to decrease with the increase of the binder content. It was estimated that biochar anodes are thermally stable at the temperature of up to 200 °C regardless of binder concentration. The concentration of the binder on the other hand had a significant influence in anodes mechanical resistance and electrical conductance: anode with 30 wt.% of the binder had the highest compressive strength equal to 104 bar; however, the highest conductivity was estimated in anode with 5 wt.% of the binder equal to 58 S/m. It is concluded that anode with 10 wt.% mucilage binder has the optimal properties necessary in MFC utilization

    Improving of pyrolysis oil from macroalgae Cladophora glomerata with HDPE pyrolysis oil

    No full text
    The slow pyrolysis of macroalgae at moderate temperatures in the reactor used resulted in an oil with a slightly better calorific value than that of the literature, but the other properties were not convincing. Therefore, co-pyrolysis with HDPE offers a way out in this study. However, this did not improve the property profile as a fuel, as the co-pyrolysate was incombustible due to its high water content. Only a mixture of the pyrolysis oil from algae and of the HDPE wax from the initial pyrolysis of HDPE resulted in a diesel-like product: the density was from 807 kg m−3, the viscosity 3.39 mm2 s−1, the calorific value was 46 MJ kg−1, and the oxidation stability was 68 min. The isoparaffin index indicates only a low branching of the paraffins, and therefore a low research octane number of 80. The blend did not need any further stabilizing additives

    Desulfurizing of pyrolysis oil of used tires using a 3d‐printed vortex diode and modeling of process

    No full text
    The use of pyrolysis oil can be seen as an alternative fuel for maritime transport. However, pyrolysis oil from tires must be desulfurized for this. Recently, this can be done by hydrodynamic cavitation. This process does not require oxidation chemicals but only water, a cavitation generator, and a pump to drive it. In the literature, this concept has been successfully tested on model fuels. In this study, the cavitation generator for the desulfurization of waste tire pyrolysis oil was printed from polylactic acid-based on simulations of the optimal design, which allows for much cheaper production and easy replacement in case of wear or testing of alternative designs. After 60 min of treatment at 5 bar inlet pressure, a desulfurization of almost 33% was achieved. Furthermore, an interaction analysis showed that only from a pyrolysis oil content of 5.5 to 6% does hydrodynamic cavitation have an effective effect on desulfurization
    corecore